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About *8Kdata*

● Research & Development in databases

● Consulting, Training and Support in PostgreSQL

● Founders of PostgreSQL España, 5th largest PUG 
in the world (>500 members as of today)

● About myself: CTO at 8Kdata:
@ahachete
http://linkd.in/1jhvzQ3

www.8kdata.com



  

PostgreSQL & Java

https://www.flickr.com/photos/trevi55/296946221/



  

● Java IS the enterprise language

● Arguably, there is more Java code 
accessing PostgreSQL than from any 
other programming language

● Both Java and PostgreSQL are mature, 
reliable and trusted

PostgreSQL & Java



  

Java: TIOBE index



  

Java: GitHub popularity



  

PYPL: Popularity Programming Languages



  

thePast =
new List();



  

Java and PostgreSQL haven't mixed well:

● Managed memory vs unmanaged
● Java is (still!) perceived as slow and 
bloated

● Java requires a runtime (JVM)
● PostgreSQL is ANSI C
● Few Postgres developers like and/or 
are proficient in Java

PostgreSQL and Java in the past



  

● “Official” driver. Type 4 driver

● Lessons learned:
➔ We were not involved in the JDBC 
specification

➔ Lack of a rowid is painful
➔ Choosing “?” for PreparedStatement 
bind variables was a bad choice

JDBC Driver (pgjdbc)



  

● Started strong, faded away

● Offers a JDBC API that wraps SPI calls 
with JNI

● There's no constantly running JVM. No 
support for saving state, more overhead

● At one point offered support for gcj

pl/java
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● Alternative implementation of server-side 
Java in PostgreSQL

● Followed the approach of a Java server 
running permanently, and offered JDBC 
support

● Heated debate vs pl/java regarding 
inclusion in core 

pl/j



  

thePresent =
new List<JavaTech>();



  

● Developer base and activity has surged 
in the last year

● Mavenized!

● Latest versions have significantly 
improved performance

● Solid, reliable choice

JDBC Driver (pgjdbc)



  

pgjdbc-ng
● Modern driver, requieres Java 7
● Uses Netty for network I/O
● Favors binary over text mode
● Goal of being really fast
● Not on par in terms of features with 
pgjdbc (notably, lacks COPY)

● Latest release: 0.6 (oct 2015)
● https://github.com/impossibl/pgjdbc-ng/releases

Other drivers

https://github.com/impossibl/pgjdbc-ng/releases


  

● Progress Type 5 driver
https://www.progress.com/jdbc/postgresql
Commercial driver, barely known by community

● PostgreSQL async driver
https://github.com/mauricio/postgresql-async
Non-JDBC
Written in Scala, also supports MySQL
Netty based
Active development

Other drivers

https://www.progress.com/jdbc/postgresql
https://github.com/mauricio/postgresql-async


  

● RxJava-jdbc
https://github.com/davidmoten/rxjava-jdbc
JDBC generic (not postgres specific)
All the RxJava goodness!
Compose queries in serial or parallel
Map results into tuples or own classes

Other drivers

https://github.com/davidmoten/rxjava-jdbc


  

Benchmark!



  

On behalf of Chapman Flack…
Announcing pl/java 1.5 beta!!!!

http://tada.github.io/pljava/releasenotes.html

● Coming back! First release since 2011

● Modernized, more active community

● Works with 9.5, Java 6-8 :)

pl/java

http://tada.github.io/pljava/releasenotes.html


  

● Beware of most online tutorials. Most 
are outdated and code contains errors:
➔ Don't load the driver (Class.forName)
➔ Use try-with-resources
➔ Carefully check exceptions
➔ Use prepared statements

https://www.pgcon.org/2014/schedule/events/713.en.html

(self-plug)

Current best practices

https://www.pgcon.org/2014/schedule/events/713.en.html


  

ORMs

Really, don't get me started on this...



  

jOOQ



  

theFuture =
new List<Future<?>>();



  

● Expect more new features and 
performance improvements from 
pgjdbc, pgjdbc-ng

● Binary support for jsonb in the 
protocol!

● pl/java renaissance
● pl/j comeback?

Some predictions



  

● New PostgreSQL driver

● Async & Reactive by design. RxJava 
based

● Targets clusters, not only individual 
servers

● Netty-based, async off-heap I/O

Phoebe (WIP)



  

Expected features:
➔ Binary mode
➔ Unix Domain Sockets
➔ Logical decoding
➔ Query pipelining
➔ Fully asynchronous operation
➔ Execute query on rw or ro nodes
➔ Fluent-style API
➔ Compatible with Java >= 6

Phoebe (WIP)



  

Current API design:
 RxPostgresClient client = RxPostgresClient
                .create()
                .tcpIp("::1", 5432)
                .tcpIp("localhost", 5433)
                .allHosts()
                .init();
client.onConnectedObservable().subscribe(

c -> System.out.println(c)
);

Phoebe (WIP)
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