

Java & PostgreSQL
The Past,

The Present
And The Future

Álvaro Hernández <aht@8kdata.com>Pgconf.RU '16

About *8Kdata*

● Research & Development in databases

● Consulting, Training and Support in PostgreSQL

● Founders of PostgreSQL España, 5th largest PUG
in the world (>500 members as of today)

● About myself: CTO at 8Kdata:
@ahachete
http://linkd.in/1jhvzQ3

www.8kdata.com

PostgreSQL & Java

https://www.flickr.com/photos/trevi55/296946221/

● Java IS the enterprise language

● Arguably, there is more Java code
accessing PostgreSQL than from any
other programming language

● Both Java and PostgreSQL are mature,
reliable and trusted

PostgreSQL & Java

Java: TIOBE index

Java: GitHub popularity

PYPL: Popularity Programming Languages

thePast =
new List();

Java and PostgreSQL haven't mixed well:

● Managed memory vs unmanaged
● Java is (still!) perceived as slow and
bloated

● Java requires a runtime (JVM)
● PostgreSQL is ANSI C
● Few Postgres developers like and/or
are proficient in Java

PostgreSQL and Java in the past

● “Official” driver. Type 4 driver

● Lessons learned:
➔ We were not involved in the JDBC
specification

➔ Lack of a rowid is painful
➔ Choosing “?” for PreparedStatement
bind variables was a bad choice

JDBC Driver (pgjdbc)

● Started strong, faded away

● Offers a JDBC API that wraps SPI calls
with JNI

● There's no constantly running JVM. No
support for saving state, more overhead

● At one point offered support for gcj

pl/java

● Started strong, faded away

● Offers a JDBC API that wraps SPI calls
with JNI

● There's no constantly running JVM. No
support for saving state, more overhead

● At one point offered support for gcj

pl/java

● Alternative implementation of server-side
Java in PostgreSQL

● Followed the approach of a Java server
running permanently, and offered JDBC
support

● Heated debate vs pl/java regarding
inclusion in core

pl/j

thePresent =
new List<JavaTech>();

● Developer base and activity has surged
in the last year

● Mavenized!

● Latest versions have significantly
improved performance

● Solid, reliable choice

JDBC Driver (pgjdbc)

pgjdbc-ng
● Modern driver, requieres Java 7
● Uses Netty for network I/O
● Favors binary over text mode
● Goal of being really fast
● Not on par in terms of features with
pgjdbc (notably, lacks COPY)

● Latest release: 0.6 (oct 2015)
● https://github.com/impossibl/pgjdbc-ng/releases

Other drivers

https://github.com/impossibl/pgjdbc-ng/releases

● Progress Type 5 driver
https://www.progress.com/jdbc/postgresql
Commercial driver, barely known by community

● PostgreSQL async driver
https://github.com/mauricio/postgresql-async
Non-JDBC
Written in Scala, also supports MySQL
Netty based
Active development

Other drivers

https://www.progress.com/jdbc/postgresql
https://github.com/mauricio/postgresql-async

● RxJava-jdbc
https://github.com/davidmoten/rxjava-jdbc
JDBC generic (not postgres specific)
All the RxJava goodness!
Compose queries in serial or parallel
Map results into tuples or own classes

Other drivers

https://github.com/davidmoten/rxjava-jdbc

Benchmark!

On behalf of Chapman Flack…
Announcing pl/java 1.5 beta!!!!

http://tada.github.io/pljava/releasenotes.html

● Coming back! First release since 2011

● Modernized, more active community

● Works with 9.5, Java 6-8 :)

pl/java

http://tada.github.io/pljava/releasenotes.html

● Beware of most online tutorials. Most
are outdated and code contains errors:
➔ Don't load the driver (Class.forName)
➔ Use try-with-resources
➔ Carefully check exceptions
➔ Use prepared statements

https://www.pgcon.org/2014/schedule/events/713.en.html

(self-plug)

Current best practices

https://www.pgcon.org/2014/schedule/events/713.en.html

ORMs

Really, don't get me started on this...

jOOQ

theFuture =
new List<Future<?>>();

● Expect more new features and
performance improvements from
pgjdbc, pgjdbc-ng

● Binary support for jsonb in the
protocol!

● pl/java renaissance
● pl/j comeback?

Some predictions

● New PostgreSQL driver

● Async & Reactive by design. RxJava
based

● Targets clusters, not only individual
servers

● Netty-based, async off-heap I/O

Phoebe (WIP)

Expected features:
➔ Binary mode
➔ Unix Domain Sockets
➔ Logical decoding
➔ Query pipelining
➔ Fully asynchronous operation
➔ Execute query on rw or ro nodes
➔ Fluent-style API
➔ Compatible with Java >= 6

Phoebe (WIP)

Current API design:
 RxPostgresClient client = RxPostgresClient
 .create()
 .tcpIp("::1", 5432)
 .tcpIp("localhost", 5433)
 .allHosts()
 .init();
client.onConnectedObservable().subscribe(

c -> System.out.println(c)
);

Phoebe (WIP)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

